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Transient Analysis of Tapered Lines
Based on the Method of Series Expansion

Yue Ping Tang and Song Yue Tang

Abstract— Step response of tapered lines under matched conditions
is studied in detail by a novel method of series expansion. We use the
concept of fall time to characterize the transient characteristics and, by
using approximate formulas concerned with Gaussian pulse, response
characteristics are derived which may be a guide in practical applications
of tapered line. The effectiveness of the formulas is verified by numerical
calculations.

1. INTRODUCTION

Tapered or nonuniform transmission lines are widely used as broad
band matching sections in microwave circuits, which explains the
abundance of previous studies on tapered lines in the frequency
domain [1], [2]. However, the transient characteristics of tapered
lines are largely ignored, which is essential especially when the
tapered line is applied as a pulse-matching section [3]-[5]. Recently,
Hsue and Hechtman studied the transient behavior of general tapered
lines by investigating the step response and concluded that the
exponential line provides the largest first arriving wave followed by a
decaying transient ripple and, thus, had potential application as pulse
transformer [6]. [7]. A revised conclusion is obtained in [8] by Tang
et al. to the effect that the advantage of the exponential line lies in
its minimum dropping speed instead of in its maximum first arriving
wave.

In this paper, the step response of tapered lines under matched
conditions is studied by a novel method of series expansion, which
is a general way in studying the transient characteristics of tapered
lines. We use the concept of fall time to characterize the transient
characteristics of tapered lines, and it is shown that the performance
of tapered lines used as pulse matching sections is largely determined
by the ratio of the width of the exciting pulse to the fall time. Tapered
lines work effectively only when the width of the exciting pulse is less
than or comparable to its fall time. Approximate formulas, concerned
with the response characteristics under Gaussian pulse excitation are
derived here, which are verified by subsequent numerical calculations,
and may be an effective guide in practical applications of tapered
lines.

[I. THEORETICAL ANALYSIS OF STEP RESPONSE
A. Transform

With quasi-TEM mode approximation lossless transmission lines
are governed by the following standard equations [8]:

oV o1

ZLarn 2 o

Oz + oty 0 (1a)
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where C(x1), L(z,) are the capacitance, inductance per unit length,
respectively. The propagation speed and characteristic impedance are,
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Fig. 1. A tapered line used as a matching section.

respectively, given by
Ps(z1) =1/ L{(21)C(z1), Z{z1) = /L{z1)/C(xry).
@

With no consideration of dispersion, we use the following transfor-
mations as used in [8]:
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where
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is the propagation delay of the line. Then, equations (1a) and (1b)
become
9¢ _ 9q

- ot =r(@)p (52)
dp , Op _
ot + = r(xr)q (5b)
where 0 < 2 < 1,0 € t< o and
_dZ(x) 1
r(z) = TW (6)

for tapered lines, r(x) is assumed continuous and derivable.

A tapered line as a matching section is illustrated in Fig. 1 where
Rs and Rj denote the source and load impedances, Zs and Z,
denote the characteristic impedances at the source and load ends, Vs
is the source voltage and V7 is the voltage at the load end. Under
well matched condition, Rs = Zs and Ry, = Z are satisfied and,
with the transform of (3), the boundary conditions becomes

‘jg ¢(1,1) = 0. @

B. Method of Series Expansion

p(0,8) =

Assuming Rs = Zs = Zy, Ry, = Z1 = Z, and Vs is a unit step
source, by taking Laplace transform of both sides of (5a) and (5b)

-(with respect to ¢), we obtain

dg(z,
sq(z,s) — "qg;—S) =r(z)p(z.s) (8a)
dp(z.
sp(e,5)+ P~ ayq(a, ) (8b)
while the boundary conditions are turned into
9(1,5) =0
1
0,5) = . 9
p(0,s) TZos ®
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Now, by considering the power series approximation (with respect to
t) of P(x,t) and g(x,t) near { = x, we suppose
plz,t) = ao(z) + ar(2)(t — z) + az(x)(t — 1‘)2
+A(z,t—w) for t—22>0
plz,t) =0 for f—-2<0
q(z,t) =bo(x) + by (@)(t — ) + bo(&)(t — 2)°
+ As(z,t—2) for t—x2>0

q(z,t) =0 for t—1r<0 (10)

where Ay = o((t — 2)%). Ay = o((t — x)?) as t — x — 0. Then, by
taking Laplace transform, under general conditions we can obtain
plz,s) = (aoiw) + als(;) (1‘) + Al(x.s))e_”

glz,s) = (bo(x) + bu() + b2s(f) + As(a, s))e“” (11)

s 52
where
(12)

lim s*Ai(z,s) =0, lim s’As(x,s)=0.

By substituting (11) into (8a) and (8b), and using (12), we obtain

b() .)L') _0
() = ) )ao()
2bo(z) — dbl(‘” =r(z)a1(x)
dal(:r) .
e —r(z)b, (z i=0,1,2. (13)

Numerical calculations show that ag(a),ai(x) and az2(x) are
continuous at * = 0 and x = 1 while bi(z) and b2(x) are
discontinuous at x = 1. Thus, (13) is valid only for 0 < =z < 1.
Making use of (9), we also have

bz(l)zo l:0.1,2
1
ao(0) = N7y
() =0 i=1.2 (14)

By using both (13) and (14), we can obtain the following results

(£) = —=
ao(x) = .
0 7
]. * 2
=— dr.
a1 (z) 5770 ), ri(z)dr
1 T2 2 2 2
=—— d — +r2(0 15
w0 =5 ([ o) —r@+ro)f a9
By (3). we finally obtain the unit step response as
nvz IRV vV Z
Sp(s) = ao(1)VZ1 +al( W2 +a2( )3 1
25 252 2s
V2Zl Al(l,s))e‘ (16)
where
ao(l)\/Zl _ 1 Zl
2 " 2VZ 7
is the magnitude of the first arriving wave and
1)VZ‘ ,/? / r*(z)dz (17b)
0
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is the instantaneous dropping speed at t = 1. while
1;‘/Z 6 % (/01 rz(w)dx>2 -7%(1)
+ rz(O)] (17¢)

is the second forward derivative at ¢ = 1.

The above results show that it is not the first arriving wave but the
following dropping process that reflects the transient characteristics
of different tapered lines, which is concordant with [8]. Therefore,
we use the concept of fall time Ty to characterize the transient
characteristics, which is defined as the duration for Sr to decrease
to 90% of the first arriving voltage. Assuming the dropping is linear
at t = 1, by (17b) and (3a), we approximately have

0.174

—
%/ r2(x)dr
0

Further theoretical and numerical results both show that, the
behavior of a tapered line approaches the behavior of an ideal pulse
transformer when its fall time (in response to a step excitation) is
much larger than the width of the exciting pulse (with no consid-
eration of the propagation delay) or, conversely, tapered lines work
effectively only when the width of the exciting pulse is less than or
comparable to the fall time associated with a step excitation.

Ty = (18)

HI. RESPONSE CHARACTERISTICS
UNDER GAUSSIAN PULSE EXCITATION

The general pulse response is given by

t1
Vi(t) = / p(T)h(t1 — 7)dT (19)
0
where p(t1) is the exciting pulse and h(¢;) is the unit impulse
response (with no consideration of the propagation delay). By using
(17a), we divide h(t,) into two parts as

h(ti) = %V%[é(tl) + f(t1)]

a unit impulse function and f(t1) =
Sr(t1) is the unit step response. By

(20

where 6(t1) is
dSL(t1)/dt1(t1>0).
(17b) and (3a) we have

1
—%/ 7 (x) dz o1
=20 = 21
£0) 7 T @1)
Then, V7 (¢1) is accordingly divided into two parts
. 1 /2 f
Vi(t) = ¢/ 5 [p(t) + [ p(r)f(ta —7)dT|. (22)
2V Z, o

For t, is less than or comparable to Ty, we make the approximation
that f(t1) = —0.1/T%. Then, V1{t1) is approximate to

Vi(t1) =%\/71[ (t1) — —/0 1P(T)d7]
A 0. 1t1
= \/;;[ (t1) (E)]

where 0 < £ < ¢;. Thus it can be seen that, when the width of p(#1) is
less than or comparable to T, V1 (¢1) reaches its peak value nearly at
the same time as p(¢1 ). Also, the following undershooting reaches its
maximum value (valley point) as p(#1) tends to 0. We denote the peak
and valley points value of Vi (¢1) as Vieak and Vianey . respectively.

(23)



1744

2.5

0 05 1 15 2
TIME(Tq)

Fig. 2. The numerical Gaussian pulse responses for an exponential line,
under the conditions Rg = Z5 =50, Ry = Z; =5Q. I: W = 0.17},
22W =0.2T43.3: W =031y, 4 W = 04Ty, 5: W = 0.51y.
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Fig. 3. Curves of the output peak value and of the valley point value of the
following undershooting, as the width of the exciting pulse changes. 1: curve
of the output peak value; 2: curve of the valley point value of the following
undershooting.

For a Gaussian pulse excitation (p(t;) = Aexp (—(t; — T)*/c?)),
we obtain the following approximate formulas

Voeak =V, (1 (24a)

0.106W
Ty

_ 0.053W
Ty

‘/valley =V, (24b)

where V, is the peak value of Vi (¢1) for an ideal transformer and
W is the width of the exciting pulse at the half magnitude points.
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IV. NUMERICAL RESULTS

In this section, numerical calculations are carried out to verify the
preceding theoretical results. We solve (5a) and (5b) by the method
of characteristics [8].

In Fig. 2, we show the numerical Gaussian pulse (with peak value
= 1 V) responses for an exponential line under the conditions
Rs = Zs = 50Q0.Ry = Z; = 5. It can be seen that,
the peak value of the output pulse decreases as the width of the
excitation pulse increases, which implies that the tapered line become
progressingly less effective as a matching section. Also, the following
undershooting increases in its valley point value. In Fig. 3, for the
same conditions that apply for Fig. 2, we show a curve of the output
peak value and of the valley point value of the undershooting, as the
width of the excitation Gaussian pulse changes from 0.17 to 2.6T.
For 1.5Ty > W > 0, our numerical results are very near to the
results calculated by (24a) and (24b). It is to be pointed out that, as
the width of the exciting pulse increases, the error associated with
(24b) increases more rapidly than that associated with (24a).

V. CONCLUSION

By the method of series expansion, we study the transient charac-
teristics of dispersionless tapered lines more accurately as compared
with [8]. By further deduction, we theoretically show that the coupling
efficiency is determined by the ratio of the width of the exciting pulse
to the fall time associated with a step impulse and that tapered lines
work effectively only when the width of the exciting pulse is less
than or comparable to the fall time for a step impulse, which may be
an effective guide for practical applications.
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