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Transient Analysis of Tapered Lines

Based on the Method of Series Expansion
Zs z,

Yue Ping Tang and Song Yue Tang

Abstract— Step response of tapered tines under matched conditions
is studied in detail by a novel method of series expansion. We use the
concept of fall time to characterize the transient characteristics and, by
using approximate formulas concerned with Gaussian pnlse, response
characteristics are derived which may be a guide in practical applications
of tapered tine. The effectiveness of the formulas is verified by numerical
calculations.

Fig. 1. A tapered line used as a matching section.

respectively, given by

Ps(zl) = l//~, Z(zl) = /L(xl)/c(.rl).

(2)

I. INTRODUCTION

Tapered or nonuniform transmission lines are widely used as broad

band matching sections in microwave circuits, which explains the

abundance of previous studies on tapered lines in the frequency

domain [1], [2]. However, the transient characteristics of tapered

lines are largely ignored, which is essential especially when the

tapered line is applied as a pulse-matching section [3]–[5]. Recently,

Hsue and Hechtman studied the transient behavior of general tapered

lines by investigating the step response and concluded that the

exponential line provides the largest first arriving wave followed by a

decaying transient ripple and, thus, had potential application as pulse

transformer [6], [7]. A revised conclusion is obtained in [8] by Tang

et al. to the effect that the advantage of the exponential line lies in

its minimum dropping speed instead of in its maximum first arriving

wave.

In this paper, the step response of tapered lines under matched

conditions is studied by a novel method of series expansion, which

is a general way in studying the transient characteristics of tapered

lines. We use the concept of fall time to characterize the transient

characteristics of tapered lines, and it is shown that the performance

of tapered lines used as pulse matching sections is largely determined

by the ratio of the width of the exciting pulse to the fall time. Tapered

lines work effectively only when the width of the exciting pulse is less

than or comparable to its fall time. Approximate formulas, concerned

with the response characteristics under Gaussian pulse excitation are

derived here, which are verified by subsequent numerical calculations,

and may be an effective guide in practical applications of tapered

lines.

With no consideration of dispersion, we use the following transfor-

mations as used in [8]:

1

J

‘1 dxl

‘=m ~ Ps(x, )’
t.~

Td
(3a)

(3b)

where

J1 dxl
Td= —

o Ps(zl)
(4)

is the propagation delay of the line. Then, equations (1a) and (lb)

become

(5a)

(5b)

dZ(x) 1
r(r) . ——

d.r 22(z)
(6)

for tapered lines, r(z) is assumed continuous and derivable.

A tapered line as a matching section is illustrated in Fig. 1 where

RS and RL denote the source and load impedances, 2S and ZL

denote the characteristic impedances at the source and load ends, 1>

is the source voltage and JI is the voltage at the load end. Under

well matched condition, RS = ZS and RL = ZL are satisfied and,

with the transform of (3), the boundary conditions becomesII. THEORETICAL ANALYSIS OF STEP RESPONSE

T> (t)
p(o, t) = —

I/’%’
q(l, t) = o. (7)A. Transform

With quasi-TEM mode approximation lossless transmission lines

are governed by th,e following standard equations [8]: B. Method of Series Expansion

Assuming RS = 2S = 20, RL = ZL = ZI and VS is a unit step

source, by taking Laplace transform of both sides of (5a) and (5b)

(with respect to t), we obtain

(la)

(lb)
dq(x, S)

Sq(x, s) –
dx

=r(z)p(x. s)

dp(x, s)
Sp(.r, s) +

dx
= –r(z)q(x, s)

(8a)
where C(ZI ), L (z ~) are the capacitance. inductance per unit length,

respectively. The propagation speed and characteristic impedance are, (8b)
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while the boundary conditions are turned into

q(l, s) =0
1

P(O, s) = —
as ‘

(9)
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Now, by considering the power series approximation (with respect to

t) of ~(~,t) andq(.r, t) neart = x, we suppose

P(~, t) =ao(z) + al(z)(t– z) + a2(z)(t – .r)2

+Al(z, t–z) for t–x>O

p(z, t)=O for ~–z<O

q(x, t) =bo(.r) + bl(z)(t– .r) + bz(.r)(t– .r)z

+A2(z, t–z) for t–z>O

q(z, t)=O for t–.r<O (lo)

where Al = o((t–z)2), A2 = o((t– X)2) as t– .r ~ O. Then, by

taking Laplace transform, under general conditions we can obtain

(

aO(x) + al(r) + a2(2)
p(z, s) = — —

s’ )
~ + A1(T, S) e–s’

s

(

be(x) b,(x) bz(x)

)
g(x, s)= ~+7+7+Az(x, s) e–s’ (11)

where

lim S3A1 (x,s) = O, lim S3AZ(Z-, s) = O. (12)
s—m s-m

By substituting (11) into (8a) and (8b), and using (12), we obtain

b~(x) =0

db”(x)
2bl(.r) – ~ =r(.r)a~(z)

dbl(x)
2b’(.z)-T = r(z)al(.x)

dal(x)

dz
= –r(z)b, (z) i=o, l,2. (13)

Numerical calculations show that ao ( z), a I ( z ) and a2 ( .r ) are

continuous at z = O and z = 1 while bl (z) and b’(z) are

discontinuous at z = 1. Thus, (13) is valid only for O ~ $<1.

Making use of (9), we also have

b,(l) =0 i=o. 1,2

‘0(0) = &
a, (0) = O i=l,z (14)

By using both (13) and (14), we can obtain the following results

so(r) = —ii’
/

z

al(z) =–—

2G ~
r2(z) d.r.

,;[(,/ )

, 2

a2(.r)=— r2(.r) dx – 72(Z) + r-z(o)
o 1

By (3). we finally obtain the unit step response as

(aO(l)/’Z
SL(S) = ~,

+ al(l)fi + a2(l)JZ
2s’ 2s3

+a

)
~Al(l,s) e“’

is the magnitude of the first arriving wave and

al(l)~ =

2 -iEx:.11’2(’”x

(15)

(16)

(17a)

(17b)

is the instantaneous dropping speed at t= 1,while

+ r2(0) 1 (17C)

is the second forward derivative at t = 1.

The above results show that it is not the first arriving wave but the

following dropping process that reflects the transient characteristics

of different tapered lines, which is concordant with [8]. Theret’ore,

we use the concept of fall time Tf to characterize the transient

characteristics, which is defined as the duration for SL to decrease

to 90% of the first arriving voltage. Assuming the dropping is linear

at t = 1, by ( 17b) and (3a), we approximately have

().lT,,
Tf= ~ .

1
5 J r’ (z) dr

o

(18)

Further theoretical and numerical results both show that, the

behavior of a tapered line approaches the behavior of an ideal pulse

transformer when its fall time (in response to a step excitation) is

much larger than the width of the exciting pulse (with no corlsid-

eration of the propagation delay) or, conversely, tapered lines work

effectively only when the width of the exciting pulse is less than or

comparable to the fall time associated with a step excitation.

III. RESPONSE CHARACTERISTICS

UNDER GAUSSIAN PULSE Excrr.mroN

The general pulse response is given by

J
tl

T’l, (tl) = ~(J)h(tI – T) dT (19)
o

where p (tl ) is the exciting pulse and h ( t 1) is the unit impulse

response (with no consideration of the propagation delay). By using

(17a), we divide h (t, ) into two parts as

r1 ‘1[h(t,) + f(tl)]h(tl)=z ~ (20)

where 6( t1) is a unit impulse function and f (tl ) =

dSL(tl )/dt, (t, > O). SL (tl ) is the unit step response. By

(17b) and (3a) we have

(21)/

1
1—— Tz(r) dz

f(o)= 2 OT, =-;.

Then, }k ( t 1) is accordingly divided into two parts

‘L(’’=*E[~(’’’+l*l~(T)T(’’-T’dTl’22)
For tl is less than or comparable to Tf, we make the approximation

that f(tl ) = –0.l/Tf. Then, l’~ (tl ) is approximate to

~(t)=iE[’(t)-%ll’(T)dTl
II1 Z1 O.ltl

~ ~P(tl)–—.— —--P([)
Tf 1 (23)

where O < ( ~ t 1. Thus it can be seen that, when the width of p ( t 1 ) is

less than or comparable to Tf, }k ( tl ) reaches its peak value nearly at

the same time as p(tl ). Also, the following undershooting reaches its

maximum value (valley point) as P( tl ) tends to O. We denote the peak

and valley points value of ~; ( tl ) as ~’~,~k and ~valley. reSP@ivelY.
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Fig. 3. Curves of the output peak value and of the valley point value of the

following undershooting, as the width of the exciting pulse changes. 1: curve

of the output peak value; 2: curve of the valley point value of the following
undershooting.

For a Gaussian pulse excitation (p(tl ) = A exp (– (tl– T)2/cr2 ) ),

we obtain the following approximate formulas

( 0.053U’
~;eak = t; 1 – —

T~ )
(24a)

O.1O6J$’
Vvalley = v, ~ (24b)

IV. NUMERICAL RESULTS

In this section, numerical calculations are carried out to verify the

preceding theoretical results. We solve (5a) and (5b) by the method

of characteristics [8].

In Fig. 2, we show the numerical Gaussian pulse (with peak value

= 1 V) responses for an exponential line under the conditions

RS = ZS = 50$2, RL = ZL = 50. It can be seen that,

the peak value of the output pulse decreases as the width of the

excitation pulse increases, which implies that the tapered line become

progressingly less effective as a matching section. Also, the following

undershooting increases in its valley point value. In Fig. 3, for the

same conditions that apply for Fig. 2, we show a curve of the output

peak value and of the valley point value of the undershooting, as the

width of the excitation Gaussian pulse changes from O.lTf to 2.6Tf.

For 1.5Tf > W > 0, our numerical results are very near to the

results calculated by (24a) and (24b). It is to be pointed out that, as

the width of the exciting pulse increases, the error associated with

(24b) increases more rapidly than that associated with (24a).

V. CONCLUSION

By the method of series expansion, we study the transient charac-

teristics of dispersionless tapered lines more accurately as compared

with [8]. By further deduction. we theoretically show that the coupling

efficiency is determined by the ratio of the width of the exciting pulse

to the fall time associated with a step impulse and that tapered lines

work effectively only when the width of the exciting pulse is less

than or comparable to the fall time for a step impulse, which may be

an effective guide for practical applications.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Ft. E. Colin, Foundation for Microwave Engineering. New York
McGraw-Hill, 1966.

P. Pramanick and P. Bhartia, “A generalized theory of tapered trans-

mission hne matching transformers and asymmetric couplers supporting

non-TEM modes,” IEEE Trans. Microwas,e Theory Tech., vol. 37, pp.

118+1191, Aug. 1989.

M. C. R. Carvalho and W. Margulis, “A transmission line transformer,”
Electron. Lett., vol. 27, pp. 138–139, 1991.
M. C. R. Carvalho, W. Margulis, and J. R. Souza, “A new. small-sized
transmission hne impedance transformer, with applications in high-
speed optoelectronics,” IEEE Microwave Guided Wave Lert., vol. , pp.
428430. NOV. 1992.
M. C. R. Carvalho and W. Marguhs, “Laser diode pumpmg with a
transmission line transformer,” IEEE Microwave Guided Wave Lett., vol.

1, pp. 368–370, Dec. 1991.
C.-W. Hsue and C. D. Hechtman, “Transient analysis of nonuniform,

high-pass transmission line,” IEEE Trans. Microwave Theoy Tech., vol.

38, pp. 1023-1030, Aug. 1990.

—, “Transient responses of an exponential transmission line and its

applications to high-speed backdriving in in-circuit test,” IEEE Trans.
Microwave Theory Tech., vol. 42, pp. 458462, Mar. 1994,
Y. P. Tang, Z. Li, and S. Y, Tang, “Transient analysis of tapered
transmission lines used as transformers for short pulses,” IEEE Trans.
Microwave Theory Tech., vol. 43, pp. 2573–2578, Nov. 1995.

where II is the peak value of ~7L(tl ) for an ideal transformer and

IV is the width of the exciting pulse at the half magnitude points.


